已知A为平面β外一点,AO⊥β,AB、AC为β的两条斜线,B、C∈β,BO=2,CO=12,AB与β成角为θ1,AC与β成角为θ2,且θ1-θ2=45°,求AO的值

已知A为平面β外一点,AO⊥β,AB、AC为β的两条斜线,B、C∈β,BO=2,CO=12,AB与β成角为θ1,AC与β成角为θ2,且θ1-θ2=45°,求AO的值

题目
已知A为平面β外一点,AO⊥β,AB、AC为β的两条斜线,B、C∈β,BO=2,CO=12,AB与β成角为θ1,AC与β成角为θ2,且θ1-θ2=45°,求AO的值
答案
因为AO=BO*tanθ1=OC*tanθ2-----(1) 而且θ1=θ2+45,
所以tan(θ2+45°)=6tanθ2,
由正切的二角和公式,(这里需要解一个分式方程,可以令tanθ2=X,然后解方程,注意θ2小于四十五度)可得tanθ2的值.
然侯代入(1)式,可得出AO的长度~
P.S.我身边没带笔纸,没法给呢详细计算啦,但是,我觉得这样你应该能够解出来了吧~!
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.