设a1,a2,a3...an为一组n维向量,证明这n个向量线性无关的充要条件是任一n...

设a1,a2,a3...an为一组n维向量,证明这n个向量线性无关的充要条件是任一n...

题目
设a1,a2,a3...an为一组n维向量,证明这n个向量线性无关的充要条件是任一n...
设a1,a2,a3...an为一组n维向量,证明这n个向量线性无关的充要条件是任一n维向量都可经它们线性表出.
答案
必要条件:任意(n+1)个n维向量必线形相关即任意n维向量b都可以由a1,a2,a3...an线性表出.
充分条件:显然
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.