如图①,△ABC≌△DEF,将△ABC和△DEF的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O. (1)当△DEF旋转至如图②位置,点B(E)、C、D在同一直线上时,∠
题目
如图①,△ABC≌△DEF,将△ABC和△DEF的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.
(1)当△DEF旋转至如图②位置,点B(E)、C、D在同一直线上时,∠AFD与∠DCA的数量关系是______.
(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.
(3)在图③中,连接BO、AD,猜想BO与AD之间有怎样的位置关系?画出图形,写出结论,无需证明.
答案
(1)∵△ABC≌△DEF,
∴∠A=∠D,
又∵∠AOD=∠A+∠AFD,∠AOD=∠D+∠DCA,
∴∠AFD=∠DCA;
(2)∠AFD=∠DCA.
理由如下:∵△ABC≌△DEF,
∴AB=DE,BC=EF,∠ABC=∠DEF,∠BAC=∠EDF,
∴∠ABC-∠FBC=∠DEF-∠FBC,
即∠ABF=∠DEC,
在△ABF与△DEC中,
,
∴△ABF≌△DEC(SAS),
∴∠BAF=∠EDC,
∴∠BAC-∠BAF=∠EDF-∠EDC,
即∠FAC=∠CDF,
又∠AOD=∠FAC+∠AFD=∠CDF+∠DCA,
∴∠AFD=∠DCA;
(3)如图,可以证明AO=DO,
根据到线段两端点距离相等的点在线段的垂直平分线上可得直线BO是线段AD的垂直平分线,
∴BO⊥AD.
(1)根据全等三角形对应角相等可得∠A=∠D,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AOD=∠A+∠AFD,∠AOD=∠D+∠DCA,然后整理即可得解;
(2)根据全等三角形对应边相等可得AB=DE,BC=EF,根据全等三角形对应角相等可得∠ABC=∠DEF,∠BAC=∠EDF,然后推出∠ABF=∠DEC,利用边角边证明△ABF与△DEC全等,根据全等三角形对应角相等可得∠BAF=∠EDC,再推出∠FAC=∠CDF,然后利用三角形的外角性质列式即可得证;
(3)可以证明AO=DO,根据到线段两端点距离的点在线段垂直平分线得到BO⊥AD.
全等三角形的判定与性质.
本题主要考查了全等三角形的判定与性质,利用旋转变换只改变图形的位置,不改变图形的形状与大小,找出两三角形全等的条件是解题的关键.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 英语翻译
- 他的出生地在英国.翻译.用英文
- 为什么引入一个平面高副能够减少一个自由度
- 李师傅要加工一批零件,计划每天加工60个,12天可以完成.实际9天就完成了任务,实际每天加工多少个?
- 含有抗凝剂的血液,离心或者静置一段时间后,为什么会出现分层的现象?分成了几层?
- 《一课四练》的《从灰姑娘到名作家》阅读答案~
- 一跳水运动员从离水面10米高的平台上向下跳起,举起双臂直体离开台面,此时其重心位于从手到脚全长的中点,跳起后重心升高0.45米达到最高点,落水时,身体竖直,手先入水,从离开台面到手接触水面时,可用于完
- 以(苦乐全在主观的心,不在客观的事)写自己
- 如果方程AX的平方-BA-6=0与方程AX的平方+2BA-15=0有一个公共根是3,求AB的值,并求方程的另一个根
- 规定*表示一种运算,且a*b=ab分之a-2b,试求3*(4*2分之1)的值
热门考点