若定义在r上的可导函数f(x)满足定义在R上的函数f(x)的导数为

若定义在r上的可导函数f(x)满足定义在R上的函数f(x)的导数为

题目
若定义在r上的可导函数f(x)满足定义在R上的函数f(x)的导数为
f’(x),若(x-1)f’(x) ≥0恒成立,则必有(D)
A.f(0)+f(2) <2f(1) B.f(0)+f(2) ≤2f(1) C.f(0)+f(2) >2f(1) D.f(0)+f(2) ≥2f(1)
看解法中,函数在(负无穷,1)上单调减,在(1,正无穷)上单调增,因此f(0) ≥f(1),f(2) ≥f(1),所以f(0)+f(2) ≥2f(1)等号怎么来的?
答案
很简单,你试想一下在定义域上导数恒为零,那么也是满足(x-1)f’(x) ≥0,所以就取到等号了,记住,单调减不是严格单调减,前者只需小于或等于,后者更苛刻,要求必须是小于
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.