证明 如果一个实对称矩阵A的特征值皆大于0,那么它是正定的

证明 如果一个实对称矩阵A的特征值皆大于0,那么它是正定的

题目
证明 如果一个实对称矩阵A的特征值皆大于0,那么它是正定的
答案
因为矩阵A为实对称矩阵
所以存在可逆矩阵P,使得P^TAP=Λ=diag(λ1,λ2,...λn)
因为特征值λi>0
所以矩阵Λ为正定矩阵
所以矩阵Λ的正惯性指数=n
又因为矩阵A合同于矩阵Λ
所以矩阵A的正惯性指数=n
所以矩阵A为正定矩阵
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.