已知抛物线x2=4y,点P是抛物线上的动点,点A的坐标为(12,6),求点P到点A的距离与到x轴的距离之和的最小值.

已知抛物线x2=4y,点P是抛物线上的动点,点A的坐标为(12,6),求点P到点A的距离与到x轴的距离之和的最小值.

题目
已知抛物线x2=4y,点P是抛物线上的动点,点A的坐标为(12,6),求点P到点A的距离与到x轴的距离之和的最小值.
答案
将x=12代入x2=4y,得y=36>6,
所以点A在抛物线外部.抛物线焦点为F(0,1),准线l:y=-1.
如图所示,过P点作PB⊥l于点B,交x轴于点C,
则PA+PC=PA+PB-1=PA+PF-1.
由图可知,当A、P、F三点共线时,PA+PF的值最小,
所以PA+PF的最小值为FA=13,
故PA+PC的最小值为12.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.