设A=(1 1 2,1 2 3,2 4 5),B为三阶矩阵,且A^2-AB=E,则r(AB-BA+A)=

设A=(1 1 2,1 2 3,2 4 5),B为三阶矩阵,且A^2-AB=E,则r(AB-BA+A)=

题目
设A=(1 1 2,1 2 3,2 4 5),B为三阶矩阵,且A^2-AB=E,则r(AB-BA+A)=
答案
r(A)=3 ,A可逆,A^(-1)A=EA^2-AB=E,AB=A^2-E ,左乘A^(-1) ,B=A-A^(-1),B+A^(-1)=AAB-BA+A=A^2-E-BA+A=A^2-(E+BA)+A=A^2-[A^(-1)A+BA]+A=A^2-[A^(-1)+B]A+A=A^2-A^2+A=Ar(AB-BA+A)=r(A)=3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.