已知向量a=(cosa,sina),b=(cosb,sinb),c=(-1,0),

已知向量a=(cosa,sina),b=(cosb,sinb),c=(-1,0),

题目
已知向量a=(cosa,sina),b=(cosb,sinb),c=(-1,0),
1,求向量b-c的长度的最大值
2,设向量a=π/4,且向量a垂直(b-c),求cosb的值
答案
向量a=(cosa,sina),b=(cosb,sinb),c=(-1,0),
∴向量b-c=(cosb+1,sinb)
向量b-c的最大值为:
根号下的(cosb+1)^2+sinb^2
=cosb^2+2cosb+1+sinb^2
=1+2cosb+1
=2+2cosb
又因为cosb最大值为1
∴根号下2+2cosb最大值为根号下2+2=4
即最大值为2
向量a垂直(b-c)
∴cosa*(cosb+1)+sinasinb=0
cosacosb+cosa+sinasinb=0
cos(a-b)+sina=0
解得cosb=-√2/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.