设函数f(x)在区间[-1,1]上连续,则x=0是函数g(x)=∫f(t)dt/x (上限x,下限0)的()

设函数f(x)在区间[-1,1]上连续,则x=0是函数g(x)=∫f(t)dt/x (上限x,下限0)的()

题目
设函数f(x)在区间[-1,1]上连续,则x=0是函数g(x)=∫f(t)dt/x (上限x,下限0)的()
A,连续点 B,可取间断点 C,条约间断点 D,第二类间断点
答案
选B.g(x)在x = 0处没有定义,所以无论如何x = 0也不可能是它的连续点.只需要判断究竟是哪种连续点.由于f的连续性,g(x)的分子(变上限积分)在[-1,1]可导,导数就是f(x).所以,应用罗比达法则求g(x)在x = 0处的极限可得...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.