已知f(x)是R上的奇函数,若f(1)=2,当x>0,f(x)是增函数,且对任意的x,y都有f(x+y)=f(x)+f(y),则f(x)在区间[-3,-2]的最大值为( ) A.-5 B.-6 C.
题目
已知f(x)是R上的奇函数,若f(1)=2,当x>0,f(x)是增函数,且对任意的x,y都有f(x+y)=f(x)+f(y),则f(x)在区间[-3,-2]的最大值为( )
A. -5
B. -6
C. -2
D. -4
答案
由题意可得,f(x)在区间[-3,-2]上单调递增,故f(x)在区间[-3,-2]上的最大值为f(-2).
再由f(x+y)=f(x)+f(y)及f(1)=2=-f(-1)可得
f(-2)=f(-1)+f(-1)=2f(-1)=-2f(1)=-4,
故选:D.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点