已知f(x)是R上的奇函数,若f(1)=2,当x>0,f(x)是增函数,且对任意的x,y都有f(x+y)=f(x)+f(y),则f(x)在区间[-3,-2]的最大值为(  ) A.-5 B.-6 C.

已知f(x)是R上的奇函数,若f(1)=2,当x>0,f(x)是增函数,且对任意的x,y都有f(x+y)=f(x)+f(y),则f(x)在区间[-3,-2]的最大值为(  ) A.-5 B.-6 C.

题目
已知f(x)是R上的奇函数,若f(1)=2,当x>0,f(x)是增函数,且对任意的x,y都有f(x+y)=f(x)+f(y),则f(x)在区间[-3,-2]的最大值为(  )
A. -5
B. -6
C. -2
D. -4
答案
由题意可得,f(x)在区间[-3,-2]上单调递增,故f(x)在区间[-3,-2]上的最大值为f(-2).
再由f(x+y)=f(x)+f(y)及f(1)=2=-f(-1)可得
f(-2)=f(-1)+f(-1)=2f(-1)=-2f(1)=-4,
故选:D.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.