求函数y=(2sinx*cos^2x)/(1+sinx),x∈[-π/4,π/4]的最大值

求函数y=(2sinx*cos^2x)/(1+sinx),x∈[-π/4,π/4]的最大值

题目
求函数y=(2sinx*cos^2x)/(1+sinx),x∈[-π/4,π/4]的最大值
答案
y=(2sinx*cos^2x)/(1+sinx)
=(2sinx(1- sin²x))/(1+sinx)
=2sinx(1-sinx)
=2sinx-2sin²x
设sinx=t∈[-√2/2,√2/2],
y=2t-2t²=-2(t-1/2) ²+1/2.
t=1/2时,函数最大值是1/2.
t=-√2/2时,函数最小值是-√2-1.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.