对于任意的正整数n,所有形如n3+3n2+2n的数的最大公约数是什么?

对于任意的正整数n,所有形如n3+3n2+2n的数的最大公约数是什么?

题目
对于任意的正整数n,所有形如n3+3n2+2n的数的最大公约数是什么?
答案
n3+3n2+2n=n(n+1)(n+2),
∵n、n+1、n+2是连续的三个正整数,(2分)
∴其中必有一个是2的倍数、一个是3的倍数,(3分)
∴n3+3n2+2n=n(n+1)(n+2)一定是6的倍数,(4分)
又∵n3+3n2+2n的最小值是6,(5分)
(如果不说明6是最小值,则需要说明n、n+1、n+2中除了一个是2的倍数、一个是3的倍数,第三个不可能有公因数.否则从此步以下不给分)
∴最大公约数为6.(6分)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.