设x∈(0,π/2),求函数(2sin^x+1)/sin2x的最小值
题目
设x∈(0,π/2),求函数(2sin^x+1)/sin2x的最小值
答案
sin^2(x)+cos^2(X)=1,原式=(3sin^2(x)+cos^2(x))/2sinxcosx,分式上下同除以cos^2(x),得原式=(3tan^2(x)+1)/2tanx,再将分子和分母同除以tanx,得原式=(3tanx+1/tanx)/2,因为x∈(0,π/2)所以tanx∈(0,正无穷大),...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点