如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是_.

如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是_.

题目
如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是______.
答案
连接BO,
∵∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,
∴∠OAB=∠ABO=25°,
∵等腰△ABC中,AB=AC,∠BAC=50°,
∴∠ABC=∠ACB=65°,
∴∠OBC=65°-25°=40°,
AB=AC
∠BAO=∠CAO
AO=AO

∴△ABO≌△ACO,
∴BO=CO,
∴∠OBC=∠OCB=40°,
∵点C沿EF折叠后与点O重合,
∴EO=EC,∠CEF=∠FEO,
∴∠CEF=∠FEO=
180°-2×40°
2
=50°,
故答案为:50°.
利用全等三角形的判定以及垂直平分线的性质得出∠OBC=40°,以及∠OBC=∠OCB=40°,再利用翻折变换的性质得出EO=EC,∠CEF=∠FEO,进而求出即可.

翻折变换(折叠问题);线段垂直平分线的性质;等腰三角形的性质.

此题主要考查了翻折变换的性质以及垂直平分线的性质和三角形内角和定理等知识,利用翻折变换的性质得出对应相等关系是解题关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.