怎样证明每个大于6的正整数都可以表示成两个大于1的且互质的正整数之和

怎样证明每个大于6的正整数都可以表示成两个大于1的且互质的正整数之和

题目
怎样证明每个大于6的正整数都可以表示成两个大于1的且互质的正整数之和
每个大于6的正整数都可以表示成两个大于1的且互质的正整数之和.如何证明?
希望用模4分析证明.
答案
讨论:
1.n>6且n是奇数,那么可令a=[n/2],b=[n/2]+1([x]是x的整数部分),那么a+b=n且(a,b)=(a,1)=1;
2.n>6且n是偶数,n/2是奇数,可令a=(n/2)-2,b=(n/2)+2,a>1,b>1且都是奇数,a+b=n且(a,b)=(a,4)=1
3.n>6且n是偶数,n/2是偶数,可令a=(n/2)-1,b=(n/2)+1,a>1,b>1且都是奇数,a+b=n且(a,b)=(a,2)=1
综上,不论何种情况任意>6的正整数都可以写为两个>1且互质的正整数a,b之和,得证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.