若a、b∈R,且4≤a2+b2≤9,则a2-ab+b2的最大值与最小值之和是_.

若a、b∈R,且4≤a2+b2≤9,则a2-ab+b2的最大值与最小值之和是_.

题目
若a、b∈R,且4≤a2+b2≤9,则a2-ab+b2的最大值与最小值之和是______.
答案
∵(a+b)2≥0或(a-b)2≥0,∴-(a2+b2)≤2ab≤a2+b2
∵4≤a2+b2≤9,进而可得-9≤2ab≤4,
解可得,-
9
2
≤ab≤2,∴-2≤-ab≤
9
2

∴-2+4≤a2-ab+b2
9
2
+9,即2≤a2-ab+b2
27
2

∴所求的最大值与最小值之和是:2+
27
2
=
31
2

故答案为:
31
2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.