设X1、X2是方程X^2-Xsin(π/5)+cos(4π/5)=0的两根,求arctanx1+arctanx2的值

设X1、X2是方程X^2-Xsin(π/5)+cos(4π/5)=0的两根,求arctanx1+arctanx2的值

题目
设X1、X2是方程X^2-Xsin(π/5)+cos(4π/5)=0的两根,求arctanx1+arctanx2的值
设arctanx1=a,arctanx2=b,则tana=x1,tanb=x2
又因为x1+x2=sin(π/5),x1*x2=cos(4π/5)
所以tan(a+b)=(tana+tanb)/(1-tanatanb)=(x1+x2)/(1-x1x2)=sin(π/5)/[1-cos(4π/5)]=tan(π/10)
又因为x1+x2=sin(π/5)>0,x1*x2=cos(4π/5)0,x1*x2=cos(4π/5)
答案
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.