方程2x^2+2y^2+z^2+8yz-z+8=0所确定的函数z=(x,y)的极值……
题目
方程2x^2+2y^2+z^2+8yz-z+8=0所确定的函数z=(x,y)的极值……
答案
先求偏导:运用隐式方程求导法则.z对x:4x+2z·偏z/偏x+8(z+x·偏z/偏x)-偏z/偏x=0 →偏z/偏x=-(4x+8z)/(2z+8x-1).z对y:4y+2z·偏z/偏y2+8x·偏z/偏y-偏z/偏y=0.→偏z/偏y=-4y/(2z+8x-1).则方向导数z'=√[(偏z/偏x)^2+...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点