已知|a|=2,|b|=1,a与b的夹角为60°,求向量a+2b与a-b的夹角的余弦值.

已知|a|=2,|b|=1,a与b的夹角为60°,求向量a+2b与a-b的夹角的余弦值.

题目
已知|a|=2,|b|=1,a与b的夹角为60°,求向量a+2b与a-b的夹角的余弦值.
答案
∵(a-b)²=a²+b²-2|a||b|cos
=4+1+2*2*1*cos60°
=7
∴|a-b|=√7
又∵(a+2b)²=a²+4b²+4|a||b|cos
=4+4*1+4*2*1cos60°
=12
∴|a+2b|=2√3
又∵向量(a-b)(a+2b)
=|a|²-2|b|²+|a||b|cos
=4-2*1+2*1*cos60°
=3
∴cos=向量(a-b)(a+2b)/(|a-b|*|a+2b|)
=3/(√7*2√3)
=√21/14
则向量a-b与a+2b的夹角为:arccos√21/14
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.