如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长与CE交于点E. (1)求证:△ABD∽△CED. (2)若AB=6,AD=2CD,求sin∠EBC.
题目
如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长与CE交于点E.
(1)求证:△ABD∽△CED.
(2)若AB=6,AD=2CD,求sin∠EBC.
答案
(1)证明:∵△ABC是等边三角形,
∴∠A=∠ACB=60°,
∵CE是∠ACF的平分线
∴∠ACE=∠A=60°,
又∵∠ADB=∠EDC
∴△ABD∽△CED;
(2)作DH⊥BC于点H,
∵∠ACB=60°,
∴∠HDC=30°
∵AC=6,AD=2CD,
∴CD=2,AD=4,
∵∠HDC=30°,
∴HC=
DC=1,DH=
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
|