已知正四棱锥O-ABCD的体积为322,底面边长为3,则以O为球心,OA为半径的球的表面积为 _ .

已知正四棱锥O-ABCD的体积为322,底面边长为3,则以O为球心,OA为半径的球的表面积为 _ .

题目
已知正四棱锥O-ABCD的体积为
3
2
2
,底面边长为
3
,则以O为球心,OA为半径的球的表面积为 ___ .
答案
作业帮 如图,正四棱锥O-ABCD的体积V=
1
3
sh=
1
3
3
×
3
)×OH=
3
2
2

∴OH=
3
2
2

在直角三角形OAH中,OA=
AH2+OH2
=
(
3
2
2
)
2
+(
6
2
)
2
=
6

所以表面积为4πr2=24π;
故答案为:24π.
先直接利用锥体的体积公式即可求得正四棱锥O-ABCD的高,再利用直角三角形求出正四棱锥O-ABCD的侧棱长OA,最后根据球的表面积公式计算即得.

球的体积和表面积;棱锥的结构特征.

本题考查锥体的体积、球的表面积计算,考查学生的运算能力,属基础题.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.