若复矩阵A与B可交换,即AB=BA,证明:A,B至少有一公共的特征根

若复矩阵A与B可交换,即AB=BA,证明:A,B至少有一公共的特征根

题目
若复矩阵A与B可交换,即AB=BA,证明:A,B至少有一公共的特征根
答案
只能说A,B至少有一公共的特征向量,不可能保证存在公共特征值,比如A=I,B=0
至于公共特征向量的存在性,任取A的特征值a及其特征子空间X,那么对X中的任何向量x,ABx=BAx=aBx,于是Bx也属于X,也就是说X是B的一个不变子空间,其中必存在B的特征向量.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.