微积分 导数部分 证明题

微积分 导数部分 证明题

题目
微积分 导数部分 证明题
证明若f(x)在x.点出f''(x)存在,则(1)若x.为极值点,必有f'(x)=0 (2)若x.为拐点,必有f''(x)=0 微积分 导数部分
纠正下x。打成了x
答案
  (1)就是 Fermat 定理,有的教材把它编在 Rolle 定理的证明中,你翻翻书,不行我再给你证明;
  (2)视f''(x) 如 f‘(x) 的导数,也就是对 f‘(x) 使用 Fermat 定理.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.