已知内接于圆的四边形的对角线互相垂直,求证:圆心到一边距离等于这条边所对的边的一半.(用几何法)

已知内接于圆的四边形的对角线互相垂直,求证:圆心到一边距离等于这条边所对的边的一半.(用几何法)

题目
已知内接于圆的四边形的对角线互相垂直,求证:圆心到一边距离等于这条边所对的边的一半.(用几何法)
求助
答案
证明:
如图,设四边形ABCD内接于圆M,AC⊥BD交于F
作MN⊥AD于N,连接AM并延长交圆M于E,连接FD
∵AE为直径
∴ED⊥AD
又MN⊥AD
∴MN‖ED
∴MN=(AM/AE)ED=ED/2
又∠AED=∠ACD (同弧所对圆周角相等)
∠EDA=∠CFD=Rt∠
∴∠EAD=∠CDB 
∴ED=BC
∴MN=BC/2
证毕
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.