三角形三边与内切圆半径的关系

三角形三边与内切圆半径的关系

题目
三角形三边与内切圆半径的关系
在三角形ABC中,A=60度,b/c=8/5,其内切圆半径r=2√3,则a、b、c分别为多少?
答案
设b=8k,则c=5k
由余弦定理可得a=7k
∴△ABC的面积=1/2×5k×8k×sin60°=10√3k^2
因为△ABC的内切圆的半径为2√3
∴10√3k^2=1/2×(8k+7k+5k)×2√3
∴k=2
∴a=14,b=16,c=10
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.