已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N*).(Ⅰ)证明:数列{an+1-an}是等比数列;(Ⅱ)求数列{an}的通项公式;(Ⅲ)若数列{bn}满足4b1-14b2

已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N*).(Ⅰ)证明:数列{an+1-an}是等比数列;(Ⅱ)求数列{an}的通项公式;(Ⅲ)若数列{bn}满足4b1-14b2

题目
已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N*).
(Ⅰ)证明:数列{an+1-an}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若数列{bn}满足4
答案
(Ⅰ)证明:∵an+2=3an+1-2an
∴an+2-an+1=2(an+1-an),
∵a1=1,a2=3,
an+2-an+1
an+1-an
=2(n∈N*)

∴{an+1-an}是以a2-a1=2为首项,2为公比的等比数列.
(Ⅱ) 由(Ⅰ){an+1-an}是以a2-a1=2为首项,2为公比的等比数列
得an+1-an=2n(n∈N*),
∴an=(an-an-1)+(an-1-an-2)++(a2-a1)+a1
=2n-1+2n-2++2+1
=2n-1(n∈N*).
(Ⅲ)证明:∵4b1-14b2-14bn-1=(an+1)bn
4b1+b2+…+bn-n=2nbn
∴2[(b1+b2+…+bn)-n]=nbn,①
2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn
即(n-1)bn+1-nbn+2=0.③
nbn+2-(n+1)bn+1+2=0.④
④-③,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,∴bn+2-bn+1=bn+1-bn(n∈N*),
∴{bn}是等差数列.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.