椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求证|OP|^2+|OQ|^2为定值.

椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求证|OP|^2+|OQ|^2为定值.

题目
椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求证|OP|^2+|OQ|^2为定值.
答案
设两点(x1,y1),(x2,y2),斜率分别是k1,k2则k1k2=y1y2/x1x2=-1/4根据X^2/16+Y^2/4=1y^2=4-x^2/4所以[sqrt(4-x1^2/4)*sqrt(4-x2^2/4)]/x1x2=-1/4可以化得x2^2=16-x1^2|OP|^2+|OQ|^2=x1^2+y1^2+x2^2+y2^2=4-(3/4)*x1^2+4...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.