已知数列{an}的通项公式an=n分之1+2+3+...+n,数列{bn}的通项公式bn=1/an乘以a下标n+1,则{bn}的前n项和为
题目
已知数列{an}的通项公式an=n分之1+2+3+...+n,数列{bn}的通项公式bn=1/an乘以a下标n+1,则{bn}的前n项和为
答案
an=(1+2+3+...+n)/n=(n+1)/2 又bn=1/an乘以a下标n+1=4/(n+1)(n+2)=4【1/(n+1)-1/(n+2)】 所以{bn}的前n项和为4[1/2-1/3+1/3-1/4+...+1/(n+1)-(n+2)]=4[1/2-1/(n+2)]=2n/(n+2)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点