求积分 ((x^2)*arctan(x)/sqrt(1-x^2),0,1)

求积分 ((x^2)*arctan(x)/sqrt(1-x^2),0,1)

题目
求积分 ((x^2)*arctan(x)/sqrt(1-x^2),0,1)
答案
基本积分公式有一条是这样的:
积分:1/(1+x^2)dx=arctanx+C
然后推广之后就有:
积分:1/(a^2+x^2)dx=1/a*arctan(x/a)+C
对于这道题:
积分:1/(10+3x^2)dx
=积分:1/[(sqrt(10))^2+(根号(3)*x)^2]dx
=1/根号(3)*积分:1/[(sqrt(10))^2+(根号(3)*x)^2)]d(根号(3)x)
=1/根号(3)*1/根号(10)*arctan(x/根号(3))+C
=根号(30)/30*arctan(根号(3)x/3)+C
(C是常数)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.