设A为数域P上的线性空间V的线性变换,证明:

设A为数域P上的线性空间V的线性变换,证明:

题目
设A为数域P上的线性空间V的线性变换,证明:
①A可逆则A无0特征值;
②A可逆,则A-1与A有相同的特征向量,若λ0为A的特征值,则λ0-1为A--1的特征值.
膜拜了,谢谢您的热心回答,再问一道证明题啊,不要显烦呀!
答案
用反证法.若λ=0是特征值,ξ是对应的特征向量,那么:    Aξ=λξ=0于是,一方面:A^(-1)[Aξ]=A^(-1)[0]=0另一方面:A^(-1)[Aξ]=[A^(-1)A]ξ=ξ≠0这就得出矛盾.因此,A可逆则A无0特征值.设ξ是λ...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.