如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC. (1)求C点的坐标; (2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰

如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC. (1)求C点的坐标; (2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰

题目
如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.
(1)求C点的坐标;
(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP-DE的值.
答案
(1)如图1,过C作CM⊥x轴于M点,
∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,
则∠MAC=∠OBA,
在△MAC和△OBA中
∠CMA=∠AOB=90°
∠MAC=∠OBA
AC=AB

∴△MAC≌△OBA(AAS),
∴CM=OA=2,MA=OB=4,
∴OM=OA+AM=2+4=6,
∴点C的坐标为(-6,-2).
(2)如图2,过D作DQ⊥OP于Q点,则DE=OQ
∴OP-DE=OP-OQ=PQ,
∵∠APO+∠QPD=90°,
∠APO+∠OAP=90°,
∴∠QPD=∠OAP,
在△AOP和△PQD中,
∠AOP=∠PQD=90°
∠OAP=∠QPD
AP=PD

∴△AOP≌△PQD(AAS).
∴PQ=OA=2.
即OP-DE=2.
①如图1,过C作CM⊥x轴于M点,则可以求出△MAC≌△OBA,可得CM=OA=2,MA=OB=4,故点C的坐标为(-6,-2).
②如图2,过D作DQ⊥OP于Q点,则DE=OQ
利用三角形全等的判定定理可得△AOP≌△PQD(AAS)
进一步可得PQ=OA=2,即OP-DE=2.

直角三角形全等的判定.

本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,关键还要巧妙作出辅助线,再结合坐标轴才能解出,本题难度较大.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.