在区间[1/2,2]上,函数f(x)=x^2+px+q与g(x)=x +( 1/x) +1在同一点取得相同的最小值,那么f(x)在[1/2,2]
题目
在区间[1/2,2]上,函数f(x)=x^2+px+q与g(x)=x +( 1/x) +1在同一点取得相同的最小值,那么f(x)在[1/2,2]
上的最大值是?
答案
g(x)=x+1/x+1≥2√(x*1/x)+1=3在[1/2,2]的最小值为g(1)=3故f(1)=3,即p+q=2又因为f(x)在[1/2,2]的最小值在x=1处取得,则x=1必须为f(x)的对称轴,否则,根据图像,最小值一定在端点处取得(1/2或2)所以-p/2=1,p=-2,q=4f(x)=...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点