已知∠AOB=90°,OM是∠AOB的平分线,将一个直角RPS的直角顶点P在射线OM上移动,点P不与点O重合. (1)如图,当直角RPS的两边分别与射线OA、OB交于点C、D时,请判断PC与PD的数量
题目
已知∠AOB=90°,OM是∠AOB的平分线,将一个直角RPS的直角顶点P在射线OM上移动,
点P不与点O重合.
(1)如图,当直角RPS的两边分别与射线OA、OB交于点C、D时,请判断PC与PD的数量关系,并证明你的结论;
(2)如图,在(1)的条件下,设CD与OP的交点为点G,且
PG=PD,求
的值;
(3)若直角RPS的一边与射线OB交于点D,另一边与直线OA、直线OB分别交于点C、E,且以P、D、E为顶点的三角形与△OCD相似,请画出示意图;当OD=1时,直接写出OP的长.
答案
(1)PC与PD的数量关系是相等.证明:过点P作PH⊥OA,PN⊥OB,垂足分别为点H、N.∵∠AOB=90°,易得∠HPN=90度.∴∠1+∠CPN=90°,而∠2+∠CPN=90°,∴∠1=∠2.∵OM是∠AOB的平分线,∴PH=PN,又∵∠PHC=∠PND=9...
(1)PC与PD的数量关系是相等.如图过点P作PH⊥OA,PN⊥OB,垂足分别为点H、N,根据OM是∠AOB的平分线可以得到PH=PN,又∠AOB=90°,易得∠HPN=90°,由此得到∠1+∠CPN=90°,最后得到∠1=∠2,现在可以证明△PCH≌△PDN,然后根据全等三角形的性质就可以证明PC=PD;
(2)根据(1)可以得到∠3=45°,而∠POD=45°,所以△POD∽△PDG,然后根据相似三角形的性质和已知条件就可以求出GD:OD的值;
(3)有两种情况.
①如图1所示,若PR与射线OA相交,根据以P、D、E为顶点的三角形与△OCD相似可以得到∠CEO=∠CDO,从而CE=CD,而OC⊥DE,所以OE=OD,而∠EPD=90°,则OP=1;
②如图2所示,若PR与直线OA的交点C与点A在点O的两侧,过P作PH⊥OA,PN⊥OB,垂足分别为H,N,∵∠PDE>∠EDC,可以证明△PDE∽△ODC,由此得到∠PDE=∠ODC.
∵∠OEC>∠PED,∴∠PDE=∠HCP;而PH=PN,
∴Rt△PHC≌Rt△PND,
∴HC=ND,PC=PD,∴∠PDC=∠PCD=45°,
∴∠PDO=22.5°,
根据外角的性质可得:∠PED=∠PDO+∠PCD=67.5°,即∠POE+∠OPE=67.5°,
又∠POE=45°,∴∠QPE=22.5°,
∴∠PDO=∠OPE,
∵以P、D、E为顶点的三角形与△OCD相似,
∴∠PDO=∠OCE,
∴∠OPE=∠OCE,
∴OP=OC.
设OP=x,则OH=ON=
x,HC=DN=OD-ON=1-
x;
而HC=HO+OC=
x+x,即1-
x=
x+x,
从而可得OP=
-1.
相似三角形的判定与性质;直角三角形全等的判定.
此题综合性比较强,把直角三角形的性质,相似三角形的判定与性质,全等三角形的判定与性质都结合起来,利用它们探究图形变换的规律.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点