按ζ-N定义证明 n/(a的n次方) 的极限等于0

按ζ-N定义证明 n/(a的n次方) 的极限等于0

题目
按ζ-N定义证明 n/(a的n次方) 的极限等于0
按ζ-N定义证明 n/(a的n次方) 的极限等于0
注:(ζ-N定义)设{an}为数列,a为定数,若对任给的正数ζ,总存在正数N,使得当n>N时有 |an-a|
答案
你这个题目应该要求|a|>1哦!那个不是有n次方么?那很自然就想到二项式展开啦!我做了下,下面用a^n表示a的n次方,a^表示a的平方,C(m,n)表示从n个对象中选m个的组合数.对于n>1,有:|n/a^n|=n/|a|^n=n/[1+(|a|-1)]^n<n/[C(2,n)*(|a|-1)^]=2/[(n-1)(|a|-1)^].要使2/[(n-1)(|a|-1)^]<ζ,只要n>1+2/ζ(|a|-1)^就可以了.那我们就任选一个比1+2/ζ(|a|-1)^大的自然数作为N(这总是可以办到的),则当n>N时,就有|n/a^n|<2/[(n-1)(|a|-1)^]<ζ.这不就证得了么?
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.