证明:若f(x)有二阶导数,且f(0)=f(1)=0,f(x)/x→0(x→0),则在(0,1)内至少存在一点ξ,使f'(ξ)=0

证明:若f(x)有二阶导数,且f(0)=f(1)=0,f(x)/x→0(x→0),则在(0,1)内至少存在一点ξ,使f'(ξ)=0

题目
证明:若f(x)有二阶导数,且f(0)=f(1)=0,f(x)/x→0(x→0),则在(0,1)内至少存在一点ξ,使f''(ξ)=0
答案
f(x)有二阶导数,则f(x)一阶导数及f(x)连续可导
f(x)/x→0(x→0)则f(x)→0(x→0)
而f(x)连续,则(x→0)时,f(x)→0=f(0)=0
则f(x)/x→0(x→0)=[(f(x)-f(0))/(x-0)]→0(x→0)
即f'(0)=0
因为f(0)=f(1)=0,根据罗尔中值定理在(0,1)内至少存在一点ξ1,使f'(ξ1)=0
有因为f'(0)=f'(ξ1)=0 而f(x)一阶导数连续可导
又满足罗尔中值定理
所以在(0,ξ1)即(0,1)内至少存在一点ξ,使f''(ξ)=0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.