数列问题,给我具体的解,谢谢~~~
题目
数列问题,给我具体的解,谢谢~~~
已知数列{an}和{bn}满足:a1=λ,a(n+1)=(2/3)an+n-4,bn=[(-1)^n](an-3n+21),其中为λ为实数,n为正整数.
⑴对任意实数λ,证明数列{an}不是等比数列;
⑵试判断数列{bn}是否为等比数列,并证明你的结论.
答案
⑴
a(n+1)=(2/3)an+n-4
an=(2/3)a(n-1)+n-5
两式相减:
a(n+1)-an=(2/3)[an-a(n-1)]+1
设bn=a(n+1)-an,
a2=(2/3)a1-3=(2/3)λ-3
b1=a2-a1=-(1/3)λ-3
b2=a3-a2=(2/3)a2-2-a2=-(1/3)a2-2=-(2/9)λ-1
bn=(2/3)b(n-1)+1
b(n-1)=(2/3)b(n-2)+1
两式相减:
bn-b(n-1)=(2/3)[b(n-1)-b(n-2)]
bn-b(n-1)=(2/3)^(n-2)*(b2-b1)
=(2/3)^(n-2)*[(1/9)λ+2]
bn-b(n-1)=(2/3)^(n-2)*[(1/9)λ+2]
b(n-1)-b(n-2)=(2/3)^(n-3)*[(1/9)λ+2]
……
b3-b2=(2/3)^1*[(1/9)λ+2]
b2-b1=(2/3)^0*[(1/9)λ+2]
叠加:
bn-b1=[(1/9)λ+2]*[(2/3)^(n-2)+(2/3)^(n-3)+……(2/3)^1+(2/3)^0]
=[(1/9)λ+2]*[1-(2/3)^(n-1)]/(1-2/3)
=[(1/3)λ+6]*[1-(2/3)^(n-1)]
bn=b1+[(1/3)λ+6]*[1-(2/3)^(n-1)]
=[(1/3)λ+6]*[1-(2/3)^(n-1)]-(1/3)λ-3
a(n+1)-an=bn=[(1/3)λ+6]*[1-(2/3)^(n-1)]-(1/3)λ-3
再用叠加法:
an-a(n-1)=[(1/3)λ+6]*[1-(2/3)^(n-2)]-(1/3)λ-3
an-a1=[(1/3)λ+6]*{(n-1)-[(2/3)^(n-2)+(2/3)^(n-3)+……+(2/3)^1+(2/3)^0]}-(n-1)(1/3)λ-3(n-1)
=[(1/3)λ+6]*{(n-1)-[1-(2/3)^(n-1)]/(1-2/3)}-(n-1)(1/3)λ-3(n-1)
=[(1/3)λ+6]*{(n-4)+3(2/3)^(n-1)]}-(n-1)(1/3)λ-3(n-1)
=(λ+18)(2/3)^(n-1)+3(n-7)-λ
an=(λ+18)(2/3)^(n-1)+3(n-7)
明显不是等比数列.
(2)
bn=[(-1)^n](an-3n+21)
=[(-1)^n][(λ+18)(2/3)^(n-1)+3(n-7)-3n+21]
=[(-1)^n][(λ+18)(2/3)^(n-1)]
=-(λ+18)(-2/3)^(n-1)
是首项为-(λ+18)公比为(-2/3)的等比数列.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 350体积(标况下)的氨气溶于1体积的水(密度近似为1g/cm3)中,求所得到的氨水(密度近似为0.924g/cm3)的质量分数和物质的量浓度.
- In fact,neither crocodiles nor people who shed "crocodile" tears feel sorry for their actions
- 复数范围内的1的三次方根是 1 -1/2+√3/2i
- 文言文翻译 韩愈的《曹成王碑》 稍长,重知人情,急世之要,耻一不通
- 为什么要规定碳-12原子的质量的1/12作为相对原子质量的标准
- 制作一个长80cm、宽40cm、高30cm的长方体玻璃鱼缸
- 1、盐和盐水的比是2:9,盐是水的【】分之【】,水是盐的【】分之【】
- 六年级男生人数占全年级人数的五分之三,那么女生人数是男生的百分之几?
- 用披荆斩棘、再接再厉、如饥似渴写一段话(中心明确,60字以内)
- 一束部分偏振光由光强比为2:8的线偏振光和自然光组成,求这束部分偏振光的偏振度