请帮忙证明一道数论题

请帮忙证明一道数论题

题目
请帮忙证明一道数论题
(n-1)!整除(2n-2)!这个好难啊,答案的提示说用标准分解来讨论,但我怎么觉得这个和证明多***合数有点相矛盾啊!
答案
对某个素数p
(2n-2)!的分解式中p的指数=[(2n-2)/p]+[(2n-2)/p/p]+[(2n-2)/p/p/p]+...
则只需证下式
[(2n-2)/p]>=[(n-1)/p]+[n/p]这里的p的含义是代表了p^k,k为任意正整数
然后判断
设(n-1)/p=t+s其中t是个整数,0<=s<1
则即证2t+[2s]>=t+t+[s+1/p] (¥)式
若s<1/2则 易知1/p<=1/2 则 (¥)式成立
若s>=1/2则易知1/p<1 则易见 [s+1/p]<=1故易见(¥)式也成立
从而对任意素数p
它在(2n-2)!中的指数大于等于(n)!(n-1)!中的指数
从而上面这句话中后者整除前者,得证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.