设1<a≤b≤c,证明logaˇb十logbˇc≤logcˇa≤logbˇa十logcˇb十logaˇc

设1<a≤b≤c,证明logaˇb十logbˇc≤logcˇa≤logbˇa十logcˇb十logaˇc

题目
设1<a≤b≤c,证明logaˇb十logbˇc≤logcˇa≤logbˇa十logcˇb十logaˇc
答案
1<a≤b≤c,证明logaˇb十logbˇc+logcˇa≤logbˇa十logcˇb十logaˇc
【证明】
设x=logaˇb,y=logbˇc,
则原不等式变形为:x+y+1/(xy)≤1/x+1/y+xy,
上式通分整理得:(x-1)(y-1)(xy-1)/(xy)≥0,
因为x≥1,y≥1,所以上式显然成立.
∴logaˇb十logbˇc+logcˇa≤logbˇa十logcˇb十logaˇc
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.