在三角形ABC中,A,B,C对边分别为a,b,c,已知b方-a方=ac,证:B=2A

在三角形ABC中,A,B,C对边分别为a,b,c,已知b方-a方=ac,证:B=2A

题目
在三角形ABC中,A,B,C对边分别为a,b,c,已知b方-a方=ac,证:B=2A
答案
根据余弦定理:a²=b²+c²-2bccosA b²=a²+c²-2accosB
所以b²-a²=a²-b²-2accosB+2bccosA代入b²-a²=ac并化简
得:a(1+cosB)=bcosA
又根据正弦定理知:a=2RsinA,b=2RsinB(注:R为△ABC的外接圆半径)代入
并整理得:sinA=sinBcosA-cosBsinA=sin(B-A)
即sinA=sin(B-A)
所以B-A=180°-A, B=180°显然不符合题意舍去!或者A=B-A, B=2A符合题意,证毕!
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.