∫(dx/((1+x^1/3)x^1/2))计算不定积分

∫(dx/((1+x^1/3)x^1/2))计算不定积分

题目
∫(dx/((1+x^1/3)x^1/2))计算不定积分
答案
∫ 1/[(1+x^1/3)x^1/2] dx
令x^1/6=u,则x^1/2=u^3,x^1/3=u^2,x=u^6,dx=6u^5du
=∫ 6u^5/[(1+u^2)u^3] du
=6∫ u^2/(1+u^2) du
=6∫ (u^2+1-1)/(1+u^2) du
=6∫ (u^2+1)/(1+u^2) du - 6∫ 1/(1+u^2) du
=6u - 6arctanu + C
=6x^(1/6) - 6arctan[x^(1/6)] + C
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.