求经过两圆X^2+Y^2+6X-4=0和X^2+Y^2+6y-28=0的两个交点,并且圆心在直线X-Y-4=0上的圆的方程

求经过两圆X^2+Y^2+6X-4=0和X^2+Y^2+6y-28=0的两个交点,并且圆心在直线X-Y-4=0上的圆的方程

题目
求经过两圆X^2+Y^2+6X-4=0和X^2+Y^2+6y-28=0的两个交点,并且圆心在直线X-Y-4=0上的圆的方程
已经求出圆心坐标咯:X:12 Y:-(27)
不晓得咋个求半径
短路咯
.大仙!救命!
答案
教你一种方法:若圆A经过圆b和圆c的交点,则可以设圆A的方程=圆b的方程+△(是一个参数)*圆c的方程=0,由此可以得到△的值,(前提是知道圆心坐标)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.