椭圆x24+y2=1的内接矩形的面积的最大值为_.

椭圆x24+y2=1的内接矩形的面积的最大值为_.

题目
椭圆
x2
4
+y2=1
的内接矩形的面积的最大值为______.
答案
由题意的方程可知:矩形的对角线的斜率存在.
设椭圆内接矩形一条对角线的方程为y=kx,不妨设k>0.
联立
y=kx
x2
4
+y2=1

化为(1+4k2)x2=4,取第一象限的顶点A(x,y),
解得x=
2
1+4k2
,∴y=
2k
1+4k2

∴内接矩形的面积S=2x•2y=4xy=4×
4k
1+4k2
=
16
1
k
+4k
16
2
1
k
•4k
=4.当且仅当k=
1
2
上取等号.
故椭圆
x2
4
+y2=1
的内接矩形的面积的最大值为4.
故答案为:4.
由题意的方程可知:矩形的对角线的斜率存在.设椭圆内接矩形一条对角线的方程为y=kx,不妨设k>0.
与椭圆的方程联立距离解得第一象限的顶点A(x,y),再利用内接矩形的面积S=2x•2y=4xy,及基本不等式即可得出.

椭圆的简单性质.

本题考查了椭圆的对称性、内接矩形的面积的最大值问题、基本不等式的性质,属于难题.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.