数列{bn}满足b1=2,b2=5,b(n+2)=3b(n+1)-2bn.求证数列{b(n+1)-bn}是等比数列并求出{bn}的通项公式
题目
数列{bn}满足b1=2,b2=5,b(n+2)=3b(n+1)-2bn.求证数列{b(n+1)-bn}是等比数列并求出{bn}的通项公式
数列{bn}满足b1=2,b2=5,b(n+2)=3b(n+1)-2bn.
(1)求证数列{b(n+1)-bn}是等比数列
(2)求出{bn}的通项公式
答案
1、由b(n+2)=3b(n+1)-2bn得b(n+2)-b(n+1)=2[b(n+1)-bn],所以数列{b(n+1)-bn}是首项为5-2=3,公比为2的等比数列2、b(n+1)-bn=3×2^(n-1)将式子b2-b1=3b3-b2=3×2.bn-b(n-1)=3×2^(n-2),n≥2时相加,得bn=b1+3[1...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点