如果点P在平面区域2x−y+2≥0x+y−2≤02y−1≥0上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为_.
题目
如果点P在平面区域
上,点Q在曲线x
2+(y+2)
2=1上,那么|PQ|的最小值为______.
答案
作出如图的可行域,要使|PQ|的最小,
只要圆心C(0,-2)到P的距离最小,
结合图形当P在点(0,
)处时,|CP|最小为
+2=又因为圆的半径为1,
故|PQ|的最小为
故答案为:
.
作出可行域,将|PQ|的最小值转化为圆心到可行域的最小值,结合图形,求出|CP|的最小值,减去半径得|PQ|的最小值.
二元一次不等式(组)与平面区域;两点间距离公式的应用;圆的标准方程.
本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与(0,-2)之间的距离问题
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点