设a为实数,函数f(x)=x^2+|x-a|+1.x属于R.

设a为实数,函数f(x)=x^2+|x-a|+1.x属于R.

题目
设a为实数,函数f(x)=x^2+|x-a|+1.x属于R.
1>若f(x)是偶函数,试求a的值
2>求证:无论a取任何实数函数f(x)都不可能是奇函数.
答案
1、
若f(x)是偶函数,则有:f(-x)=f(x)
f(x)=x^2+|x-a|+1.(1)
f(-x)=x^2+|-x-a|+1.(2)
令(1)式=(2)式,得
|x-a|=|x+a|所以,a=0
2、
假设存在一个实数a,使得函数f(x)为奇函数,则有:
f(-x)=-f(x)
f(-x)=x^2+|-x-a|+1.(3)
-f(x)=-(x^2+|x-a|+1).(4)
令(1)式=(2)式,得
x^2+|-x-a|+1=-(x^2+|x-a|+1),整理得:
2x^2+|x+a|+|x-a|+2=0.(5)
因为:x属于R,
所以2x^2>=0,|x+a|>=0,|x-a|>=0,也即:
2x^2+|x+a|+|x-a|>=0,显然(5)式不成立
故:无论a取任何实数函数f(x)都不可能是奇函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.