已知f(x)+f(1-x)=-1,证明函数y=f(x)的图像关于点(1/2,-1/2)对称
题目
已知f(x)+f(1-x)=-1,证明函数y=f(x)的图像关于点(1/2,-1/2)对称
答案
这个要分 两步证明 首先证明 f(x)的图像关于点(1/2,-1/2)对称 设点P(x,y)为f(x)上任意一点 则点P关于A(1/2,-1/2)对称点Q(1-x,-1-y)也在图像上 所以 f(x)+f(1-x)=-1 再证明对称点为(1/2,-1/2)时f(x)+f(1-x)=-1 方法同上 然后再 综上所述?撵木蚈K了
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点