求一道数学题 实系数方程x2+ax+2b=0

求一道数学题 实系数方程x2+ax+2b=0

题目
求一道数学题 实系数方程x2+ax+2b=0
实系数方程x2+ax+2b=0的一根在0和1之间,另一根在1和2之间,
(1)求b-2/a-1的取值范围
(2)│a-2b-3│的取值范围
答案
1.
令F(x)=x2+ax+2b
根据以知,两个根分别在0-1,1-2间

f(0)=2b>0
f(1)=1+a+2b0
以a为x轴,b为y轴,建立坐标系,则可将f(0),f(1),f(2)用线形规划表示出来,得到关于a,b的一个取值区域,b-2/a-1
表示区域内的点到点(1,2)的斜率,数形结合可得取值范围是(1/4,1)
2.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.