在三棱锥S-ABC中,△ABC是边长为23的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点. (1)证明:AC⊥SB; (2)求三棱锥B-CMN的体积.

在三棱锥S-ABC中,△ABC是边长为23的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点. (1)证明:AC⊥SB; (2)求三棱锥B-CMN的体积.

题目
在三棱锥S-ABC中,△ABC是边长为2
3
的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.

(1)证明:AC⊥SB;
(2)求三棱锥B-CMN的体积.
答案
(1)证明:取AC中点D,连接SD,DB.
因为SA=SC,AB=BC,所以AC⊥SD且AC⊥BD,
因为SD∩BD=D,所以AC⊥平面SDB.
又SB⊂平面SDB,所以AC⊥SB;
(2)因为AC⊥平面SDB,AC⊂平面ABC,所以平面SDC⊥平面ABC.
过N作NE⊥BD于E,则NE⊥平面ABC,
因为平面SAC⊥平面ABC,SD⊥AC,所以SD⊥平面ABC.
又因为NE⊥平面ABC,所以NE∥SD.
由于SN=NB,所以NE=
1
2
SD=
1
2

所以S△CMB=
1
2
CM•BM=
3
3
2

所以VB-CMN=VN-CMB=
1
3
S△CMB•NE=
1
3
×
3
3
2
×
1
2
=
3
4
(1)取AC 中点D,连接SD,DB,证明AC⊥平面SDB,由线面垂直的性质可得AC⊥SB;
(2)由VB-CMN=VN-CMB,即可求得三棱锥B-CMN的体积.

直线与平面垂直的性质.

本题考查线面垂直,考查三棱锥体积的计算,解题的关键是掌握线面垂直的判定与性质,属于中档题.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.