证明:若n阶方阵A的伴随矩阵A*可逆,则A可逆

证明:若n阶方阵A的伴随矩阵A*可逆,则A可逆

题目
证明:若n阶方阵A的伴随矩阵A*可逆,则A可逆
答案
【反证法】
假设A不可逆,则 |A|=0
所 A·A* = |A|·E = 0
因 A* 逆,等式两边右乘A*的逆,得
A=A·A*·A*的逆= A·A*·A*的逆 = 0·A*的逆 = 0
即有 A=0
进而有 A*=0 (根据伴随矩阵的意义即可)
与 A* 可逆矛盾.
所以,假设错误.
于是A可逆.
二十年教学经验,专业值得信赖!
在右上角点击“采纳回答”即可.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.