请教关于实对称矩阵相似于对角矩阵
题目
请教关于实对称矩阵相似于对角矩阵
老师您好,看了同济教材关于 实对称矩阵相似于对角矩阵的证明 但感觉书上并没有证明对角矩阵唯一且元是特征值,请问该怎么证
答案
对角元是特征值不用单独证明,相似矩阵有相同的特征值,而对角阵的特征值就是对角元.
对角阵不是唯一的.可以把对角元的次序随意交换,都与原矩阵是相似的.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- aabb,aabc,abcc的词语
- 84消毒液使白色衣服变黄如何恢复
- her,YangLing,live,book,Beijing,and,parents,in,now(.)连成一句句子
- 03 As is vividly demonstrated in the pictures above,the tender flower blossoms inside the greenhou
- 简便计算:0.11*9*0.19+0.99*0.81和0.9/3.05*0.9*3.05
- 20道一元一次方程,难一点,比如:3(x-1)+2=x-(2x-1)
- 若m,n是整数,且n的平方+3乘m平方n平方=30乘m的平方+517,则3乘m平方n平方=?
- 地球自转是绕什么转的?
- 1.比例尺表示 比 缩小的程度,比例尺的公式是 2.比例尺是个 数,分母越大 比例尺就越小
- A(2,-2),B(5,1),C(1,4),角BAC余弦值
热门考点